

Hyaluronan synthase 2 antisense transcript level associates with human skin youthfulness as identified by transcriptome sequencing

Jin Xu*, Robert C. Spitale*, Ryan A. Flynn*, Eduardo A. Torre*, Rui Li*, Inbar Raber*, Dale Kern¥, Helen E. Knaggs¥, Howard Y. Chang*, Anne Lynn S. Chang*

Introduction

- 1) The skin is an ideal model to study intrinisc genes and pathways protecting against aging, due to the relative ease of clinical inspection and biopsy.
- 2) The main objective of this exploratory study is to identify gene expression profiles of older women with visibly youthful skin.
- 3) Our systematic analysis highlight a gene-pair, HAS2 and HAS2-AS1, associated with human skin youthfulness.

Methods and Materials

- 1) Healthy women of European descent, aged 18-89 years, and skin type I/II were assessed on facial skin aging parameters and covariates (n=122).
- 2) Skin youthfulness (SY) was defined as the top 10% of individuals whose assessed skin aging features were most discrepant with their chronological ages.
- 3) Skin biopsies from sun-protected inner arm were obtained from SY (n=12) and no-SY (n=33) participants and subjected to 3'-end sequencing for expression quantification.
- 4) SY accocited genes were verified by quantitative RT-PCR

Demographics of patients

Quantitative Parameter	SY group (n=12)	no-SY group (n=33)	
Chronological age, years (SD)	71(11)	69(9)	
Skin age score (SAS), years (SD)	61(5)	81(8)	
Body mass index kg/m	25(3.3)	25(4)	
VISIA WRINKLES (SD)	93(10.6)	73(22)	
Smoking history: Yes (%)	3 (25%)	13 (39%)	
Previous Skin cancer: Yes	3 (25%)	10(30%)	
Lifetime UV hours accounting for UV Index*, score (SD)	36(27)	49(44)	

Table1. Demorgraphics of women enrolled and potential covariantes. There were no significant changes in other covariance between SY and no-SY group, expect the SAS and VISIA WRINKLES.

*Stanford University School of Medicine, Department of Dermatology ¥ NuSkin International

itive regulation of immune response activation of immune response extracellular matrix organization lation of immune system process activation of plasma proteins

pigmentation during developmen pigment biosynthetic process melanin biosynthetic process pigment metabolic process melanin metabolic process eye pigment metabolic process pigment biosynthetic process secondary metabolic proces

SY group

no-SY group

Gene expression associated to skin youthful appearance

Figure 2 Heat map of gene expression profiles showing differences between SY group and non-SY group by unbiased clustering. A total of 114 genes were found to associate with SY phenotype, with 104 showing decreased levels in SY group and 10 showing increased levels in the SY group. A number of themes emerged from the SY genes identified. First, a group of genes involved in glycoprotein biosynthetic process and glycoprotein metabolic process were identified. Advanced glycation end products are known to associate with skin aging.

Figure 3 Expression of PHLDA1, a hair follicle stem cell marker, decreased in SY group.(a) Expression difference of PHLDA1 between SY group (n=12) and no-SY (n=33) group by 3'seq (p=2.4E-5 by linear regression test). (b) Expression difference of PHLDA1 between SY group (n=10) and no-SY (n=10) by RT-PCR(p=0.07667, Wilcoxon test). (c) Scatterplot of PHLDA1 expression by chronological age (n=45). Overall, there is a slight negative correlation between PHLDA1 and chronological age (R=-0.227, p=0.1345). SY individuals (red dots) tend to have lower expression levels of PHLDA1 compared to no-SY individuals (black dot).

Figure1 Gene ontology analysis of age-effect genes. Biologic themes most significantly increased with age include biological adhesion, positive regulation of response to stimulus and extracellular structure organization and immune response genes. Biologic themes most significantly decreased with age include pigmentation related genes. These results are consistent with prior

sion by chronological age. There is no correlation between HAS2-AS1 and chronological age. Red points shows expression level of individuals with SY, which tend to be lower than individuals without SY, but at the same chronological age. (d) Positive correlation between HAS2-AS1 and HAS2 among SY and control patients (r=0.49, p=0.00063, n=45).

Immunofluorescence assay of HAS2

Figure 5 Immunofluorescence with antibody to HAS2 on sun-protected inner arm skin from individuals with and without SY,Scale bar=25µm. Typical fibroblasts are shown and did not show significant differences in signal.

Discussion

Acknowledgments

The authors wish to thank Gefei Alex Zhu, Rashmi Tarhalkar and Hoa Nguyen for assistance with clinical data acquisition and curation.

Conflict of interest DK and HEK are employees of NuSkin International.

Figure 4 (a) Expression difference of HAS2-AS1 between SY group (n=12) and no-SY(n=33) group by 3'seq (p=0.00105, by linear regression). (b) Expression difference of HAS2-AS1 by RT-PCR (p=0.09067, Wilcoxon test) after normalized to actin- β .(c) Scatterplot of HAS2-AS1 expres-

HAS2 in green and DAPI in blue

1) The expression profiles reported here are a mix of epidermal and dermal cells, and different numbers of each type may influence the expression profiles. Future studies are underway to delineate the cell types that express HAS2-AS1 and assess if there are differences across chronological age and SY phenotype according to cell type

Knock-down of HAS2-AS1 in fibroblast cell showed non-significant decreases in HAS2 transcript levels by qRT-PCR. HAS2 protein did not show significant differences between SY and no-SY groups. Precise mechanism of HAS2-AS1 functions remains to be worked out.