A unique blend of natural compounds opposes age-related changes in gene expression related to dysregulation of cellular detoxification and antioxidant protection Mastaloudis A¹; Barger JL²; Prolla TA^{2,3}; Weindruch R^{2, 3}; Wood SM¹

¹Nu Skin Enterprises Center for Anti-Aging Research, Provo, Utah, USA; ²LifeGen Technologies, Madison, Wisconsin, USA; ³University of Wisconsin, Madison, Wisconsin, USA

INTRODUCTION

Aging is associated with the accumulation of cellular toxins and damage. Declines in cellular detoxification mechanisms and impairments in antioxidant protection are consistently observed in aging models and likely contribute to ageassociated accumulation of cellular damage. The master regulator, Nuclear factor erythroid 2-related factor 2 (Nrf2), is a transcription factor that regulates the basal and inducible expression of a large battery of genes encoding for cytoprotective factors including those that defend against electrophilic stressors and oxidative insults.

METHODS

RESULTS

The phytonutrient blend was identified based on previous in vivo screenings of individual ingredients that positively influenced key cytoprotective pathways and included the following components:

- Cordyceps sinensis
- Blood (red) orange extract
- Pomegranate whole fruit extract
- Panax ginseng extract
- Broccoli seed extract
- Grape seed extract

The Nrf2/electrophile response element (EpRE) Antioxidant Protection and Phase II Detoxification pathways are impaired with aging due to age-related changes in gene expression (2). A key example is the reduction in glutathione (GSH) levels in all tissues with age due primarily to declines in glutamatecysteine ligase and glutathione synthase expression (1). Opposing these changes in gene expression may delay or attenuate the aging process.

Most anti-aging intervention strategies to date, have tested single ingredients and have focused solely on an individual gene, in an isolated tissue. A more comprehensive strategy is to examine changes in the expression patterns of multiple genes or pathways in specific tissues and then to identify a blend of phytochemicals that opposes those age-related changes. It seems prudent to examine changes that occur during middle age rather than waiting until old age when an intervention may not be as impactful. Accordingly, the purpose of this study was to test a blend of natural compounds in middle-aged mice, compared to young mice, for the ability to oppose age-related changes in the expression of Nrf2-regulated genes involved in the detoxification of xenobiotics and xenobiotic metabolites and in the synthesis and regulation of intrinsic antioxidants and antioxidant enzymes.

Dietary Chemopreventative Compounds

Data Analysis:

Full gene expression profiling was performed using Affymetrix Mouse Genome arrays in liver and gastrocnemius skeletal muscle tissues. Gene expression profiles and patterns were compared in order to identify changes in gene expression with age (MAC vs. YC) and in response to supplementation (MAS vs. MAC).

RESULTS

			10	Liver						Gastrocnemius			
ene symbol	Gene Title		YC vs. FC	MAC p-value	M	AC vs. FC	MAS p-value	Y	C VS. FC	MAC p-value)	MAC vs FC	p-value
lfe2l2	nuclear factor, erythroid derived 2, like 2	¥	-1.78	0.00	1	1.33	0.00	NC	1.01	0.87	NC	1.11	0.14
Sclc	glutamate-cysteine ligase, catalytic subunit	NC	-1.19	0.10	NC	1.03	0.79	NC	1.14	0.09	NC	-1.03	0.65
Sclm	glutamate-cysteine ligase, modifier subunit	¥	-1.62	0.00	$\mathbf{\Psi}$	-1.27	0.00	NC	-1.01	0.84	NC	1.04	0.68
Ssr	glutathione reductase	¥	-1.27	0.00	1	1.62	0.00	NC	-1.08	0.21	NC	-1.09	0.21
SSS	glutathione synthetase	1	1.17	0.01	NC	1.13	0.05	NC	1.03	0.53	NC	-1.01	0.82
Gsta3	glutathione S-transferase, alpha 3	¥	-1.09	0.03	+	-1.10	0.02	1	1.38	0.00	NC	-1.10	0.24
Ssta4	glutathione S-transferase, alpha 4	1	1.50	0.00	¥	-1.25	0.01	T	1.24	0.04	NC	1.22	0.05
Gstm1	glutathione S-transferase, mu 1	1	2.02	0.00	1	-1.07	0.03	NC	1.10	0.07	NC	-1.01	0.91
Sstm2	glutathione S-transferase, mu 2	1	1.86	0.00	NC	1.02	0.82	NC	1.04	0.46	NC	1.03	0.48
Sstm3	glutathione S-transferase, mu 3	1	2.24	0.00	NC	-1.05	0.73	NC	1.08	0.09	*	-1.18	0.03
Gsto1	glutathione S-transferase omega 1	1	1.28	0.02	*	-1.53	0.00	NC	1.39	0.08	NC	-1.27	0.21
SSTET	glutathione S-transferase, theta 1	NC	-1.02	0.74	T	1.35	0.00	NC	-1.01	0.94	NC	-1.01	0.93
SILZ	glutarnone S-transferase, theta 2	T	1.21	0.00	NC	-1.02	0.75	NC	1.08	0.39	NC	1.03	0.69
	glutatedoxin 2 (monansierase)	T	1.19	0.00	NC	-1.09	0.01	INC.	1.00	0.09	T	-1.24	0.00
Snx4	*dutathione peroxidase 4 (liver and testis)	T	1.73	0.00	J	-1.00	0.00	NC	-1.02	0.00	NC	-1.01	0.00
inx7	dutathione peroxidase 7		1.12	0.04	NC	-1.03	0.63		1.16	0.03	J	-1.11	0.04
Box8	glutathione peroxidase 8 (putative)	¥	-1.18	0.00	1	1.19	0.02	NC	-1.03	0.73	NC	-1.12	0.15
tox1	ATX1 (antioxidant protein 1) homolog 1 (veast)	•	1.90	0.00	÷	-1.32	0.00		1.42	0.00	4	-1.14	0.01
at	catalase	¥	-1.12	0.00	1	1.07	0.00	NC	-1.11	0.23	NC	-1.09	0.20
od1	superoxide dismutase 1, soluble	1	1.15	0.00	NC	1.00	0.90	¥	-1.27	0.00	1	1.22	0.00
od2	superoxide dismutase 2, mitochondrial	¥	-1.34	0.00	NC	-1.06	0.08	NC	1.03	0.54	NC	1.08	0.07
od3	superoxide dismutase 3, extracellular	1	1.57	0.00	1	1.20	0.00	1	1.18	0.01	NC	-1.12	0.11
ld	dihydrolipoamide dehydrogenase	¥	-1.56	0.00	NC	-1.05	0.38	NC	-1.16	0.12	NC	-1.06	0.53
nox2	ecto-NOX disulfide-thiol exchanger 2	¥	-1.17	0.00	1	1.13	0.03	1	1.24	0.01	NC	1.10	0.23
phx2	epoxide hydrolase 2, cytoplasmic	Ψ	-1.24	0.00	Ψ	-1.15	0.02	NC	1.21	0.15	NC	-1.14	0.22
sd	esterase D/formylglutathione hydrolase	¥	-1.15	0.01	NC	-1.07	0.39	1	1.12	0.04	1	1.18	0.02
lmox1	heme oxygenase (decycling) 1	↑	2.89	0.02	NC	-1.45	0.23	1	1.39	0.00	4	-1.32	0.00
lyou1	hypoxia up-regulated 1	↑	1.26	0.04	NC	1.17	0.08	NC	1.08	0.14	NC	-1.05	0.35
ias	lipoic acid synthetase	*	-1.58	0.00	NC	1.08	0.14	1	1.34	0.00	NC	-1.01	0.85
lgst1	microsomal glutathione S-transferase 1	¥	-1.26	0.00	Ŧ	-1.12	0.00	1	1.83	0.00	NC	1.01	0.90
lgst3	microsomal glutathione S-transferase 3	1	1.30	0.00	NC	-1.00	0.93	Υ	1.28	0.00	*	-1.25	0.02
1t1	metallothionein 1	1	3.44	0.01	*	-3.47	0.01	1	4.20	0.01	*	-2.22	0.04
1t2	metallothionein 2	1	2.15	0.01	•	-2.51	0.01	1	5.22	0.01	NC	-1.95	0.12
lqo1	NAD(P)H dehydrogenase, quinone 1	T	1.29	0.05	NC	1.00	0.99	NC	-1.04	0.71	NC	1.18	0.15
Iqo2	NAD(P)H denydrogenase, quinone 2	*	-1.20	0.00	NC	-1.04	0.40	NC	-1.09	0.23	T	1.20	0.02
)XCr1	oxidation resistance 1	Ť	-1.34	0.00	NC	1.00	0.96	NC	1.02	0.80	NC	1.07	0.27
lorp	DEED TESS responsive 1	J.	1.22	0.00	NC	1.05	0.22	NC	-1.10	0.25	NC	1.09	0.22
erp Prdv1	neroviredovin 1	J.	-1.20	0.00	Ţ	_1 31	0.00	T	1.44	0.04		1 18	0.04
Prdx2	peroxiredoxin 2	•	1.65	0.00	J	-1.19	0.00	J	-1 18	0.02	T	1.10	0.00
rdx3	peroxiredoxin 2	J	-1.45	0.00	J.	-1.19	0.00	NC	1.05	0.44	NC	1.11	0.06
rdx6	peroxiredoxin 6	1	1.08	0.04	1	1.11	0.01		1.19	0.01	NC	1.01	0.84
ult1b1	sulfotransferase family 1B, member 1	÷	-2.14	0.00	NC	1.05	0.62	÷	-1.45	0.00	1	1.25	0.02
ult1c2	sulfotransferase family, cytosolic, 1C, member 2	¥	-2.23	0.00	1	1.32	0.03	NC	-1.27	0.11	NC	1.09	0.52
ult1e1	sulfotransferase family 1E, member 1	1	50.22	0.02	¥	-40.10	0.02	NC	-1.06	0.67	1	1.53	0.04
ult2b1	sulfotransferase family, cytosolic, 2B, member 1	1	1.11	0.04	¥	-1.13	0.03	1	1.23	0.01	NC	-1.11	0.14
ult3a1	sulfotransferase family 3A, member 1	1	69.70	0.05	¥	-39.92	0.04	NC	-1.13	0.18	Υ	1.38	0.01
ult4a1	sulfotransferase family 4A, member 1	1	1.13	0.01	¥	-1.25	0.00	NC	1.03	0.64	NC	-1.06	0.49
mx1	thioredoxin-related transmembrane protein 1	Ψ	-1.95	0.00	NC	1.04	0.16	NC	1.04	0.62	NC	1.02	0.79
mx2	thioredoxin-related transmembrane protein 2	¥	-1.22	0.01	1	1.21	0.01	NC	1.00	0.99	Υ	1.31	0.00
mx3	thioredoxin-related transmembrane protein 3	↓	-1.70	0.00	NC	-1.03	0.57	NC	-1.04	0.44	1	1.36	0.00
xn1	thioredoxin 1	¥	-1.05	0.05	1	1.07	0.01	NC	1.01	0.64	NC	-1.06	0.20
xn2	thioredoxin 2	Υ	1.67	0.00	1	1.09	0.01	NC	-1.06	0.32	NC	-1.10	0.11
xndc11	thioredoxin domain containing 11	↑	1.27	0.02	NC	1.03	0.70	↑	1.13	0.04	NC	-1.03	0.46
xndc12	thioredoxin domain containing 12	¥	-1.26	0.00	1	1.26	0.00	NC	-1.02	0.81	NC	-1.07	0.50
xndc15	thioredoxin domain containing 15	¥	-1.34	0.00	NC	-1.05	0.18	NC	1.05	0.31	¥	-1.09	0.04
xndc17	thioredoxin domain containing 17	1	1.29	0.00	NC	1.02	0.34	1	1.45	0.00	Ŷ	-1.29	0.00
xndc9	thioredoxin domain containing 9	+	-1.81	0.00	NC	-1.07	0.21	NC	-1.00	0.98	NC	1.05	0.50
xnl1	thioredoxin-like 1	Ψ	-1.20	0.03	1	1.18	0.01	1	1.16	0.03	NC	1.03	0.59
xnl4a	thioredoxin-like 4A	1	1.21	0.00	NC	-1.07	0.05	NC	1.06	0.15	NC	-1.01	0.73
xnl4b	thioredoxin-like 4B	Ψ.	-1.31	0.00	T	1.16	0.04	×	-1.15	0.03	1	1.29	0.01
xnrd1	thioredoxin reductase 1	*	-1.10	0.01	NC	1.04	0.19	NC	-1.06	0.51	NC	1.09	0.41
XIII/QZ	unoredoxin reductase 2	¥.	1.24	0.00	T	1.10	0.01	INC	1.04	0.42	NC	-1.06	0.3/

00	6	ğ	0	8	ö	ğ	8
0	0	0	ä	0	0	0	<u> </u>
8	8	2	0	8	2	2	2
0	0	0	0	0	0	0	0
0	0	0	0	0	ম	0	0
0	0	0	6	(p)	2	0	0
2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	0	22		0	P
ao	0	a	Pm	00	1 mg	Pres.	Cl

Figure 2. DNA Integrity. Changes in cytoprotective pathways responsible for maintenance of DNA integrity that were influenced by age (solid bars) and/or supplementation (hatched bars) in the liver. None of these pathways were changed in the skeletal muscle (data not shown).

- GO:0006281 DNA repair
- GO:0030330 DNA damage response, signal transduction by p53 class mediator
- GO:0006298 DNA mismatch repair
- **GO:0006974** Response to DNA damage stimulus
- GO:0042770 DNA damage response, signal transduction
- GO:0000077 DNA damage checkpoint
- **GO:0000723** Telomere maintenance *p<0.05 MAC vs. YC; #p<0.05 MAS vs. MAC

SUMMARY & CONCLUSIONS

- By middle age, expression of Nrf2 was downregulated in liver, but not in skeletal muscle, suggesting that either Nrf2 is not downregulated in skeletal muscle with age or that middle-age is too early to detect changes in Nrf2.
- The phytonutrient blend effectively opposed the downregulation of Nrf2 in liver observed in middleage controls.

Figure 1. Overview of the signaling cascade regulating Phase II Detoxification and Antioxidant Protection; adapted from Chen and Kong (3).

METHODS

Three groups of CBA/J mice; n = 8/group.

- 1. Young controls (YC); age 2 mo.; AIN 93^{M} diet.
- 2. Middle-age controls (MAC); age 16 mo.; AIN 93^{M} diet
- 3. Middle-age supplemented (MAS); age 16 mo.; AIN 93^M diet fortified with a **phytonutrient blend**.
 - Feeding for 3 months.

Table 1. Nrf2-Related Phase II Detoxification Genes. The various classes of Nrf2 related Phase II detoxification enzymes were differentially modulated in response to age and to the supplement in liver and in skeletal muscle.

In addition to restoring the expression of the master regulator Nrf2, the supplement opposed agerelated changes in the expression of several Nrf2regulated genes in liver and muscle, suggesting that it may combat some negative effects of aging. 4. Although many individual genes related to cellular

- detoxification were changed with age, none of the GO Pathways related to detoxification had changed significantly by middle-age indicating that these pathways decline at a later age.
- Conversely, some pathways related to DNA 5. integrity were changed by middle-age.
- The supplement opposed most age related 6. changes related to DNA repair. In addition, the supplement upregulated some DNA repair pathways that had not changed by middle age suggesting that by intervening at a younger age, the supplement may have stimulated protective mechanisms *before* they had the chance to decline.
- 7. These effects, elicited by a mid-life nutritional intervention, will likely have positive implications for healthy human aging or 'youthspan' and warrant further investigation.

References:

- . Lu Mol. Aspects. Med. 2009
- Suh et al. PNAS 2004
- 3. Chen and Kong, FRBM:36; 2004

Acknowledgments: The authors appreciate contributions from Diana Fort, PhD; Doug Burke, PhD; Glenn Cheney; Jessie Barrett; Lih-Wen Ding; Bill Landreth; Jim Vann, PhD; and Jihae Kwon for their technical expertise.